การหา Word Embedding ด้วย word2vec

	ordered	throne	he	she	killed	poor	• • •
king	30	20	5	8	10	3	
queen	25	15	3	12	3	2	
slave	5	3	8	6	40	25	
woman	10	5	4	9	5	10	

word embedding

	King	Queen	Slave	Woman
A112131	0.90	0.90	0.01	0.20
	• •	,		

word-context matrix histu word embedding

word embedding เก็บลักษณะทาง semantic

= word representation

ใน ฤดูหนาว วิกฤต ฝุ่น จะ ร้ายแรง ขึ้น context context $\frac{1}{1}$ window size = 2

text classification problem labe training data: SUUM JB WW ใน่ ฤดูหนาว วิกฤต ฝุ่น จะ ร้ายแรง ขึ้น window size = 2

18 logistic regression P(กุดหนาว โ วิกฤศ) (ปนไ วิกฤศ) ใน ฤดูหนาว วิกฤต ฝุ่น จะ ร้ายแรง ขึ้น context window size = 7

ใน ฤดูหนาว วิกฤต ฝุ่น จะ ร้ายแรง ขึ้น

weight anno P(c) Innm) Softmax

Objective function

$$J(\theta) = \sum_{c \in P} \left(\sum_{c \in P} -\log P(c_{eff} | w) + \sum_{c \in P} -\log P(c_{eff} | w) \right)$$

- word2vec (Skipgram model) สามารถเปลี่ยน word-context matrix เป็น word embedding ได้อย่างมีประสิทธิภาพ
- Word embedding พวกนี้เก็บลักษณะเฉพาะ ทาง semantic และ syntactic ไว้สำหรับ โจทย์ อื่นๆ ที่ต้องใช้ความเข้าใจของคำ
- Word embedding เป็นพื้นฐานของ NLP + Deep learning เกือบทั้งหมดในตอนนี้

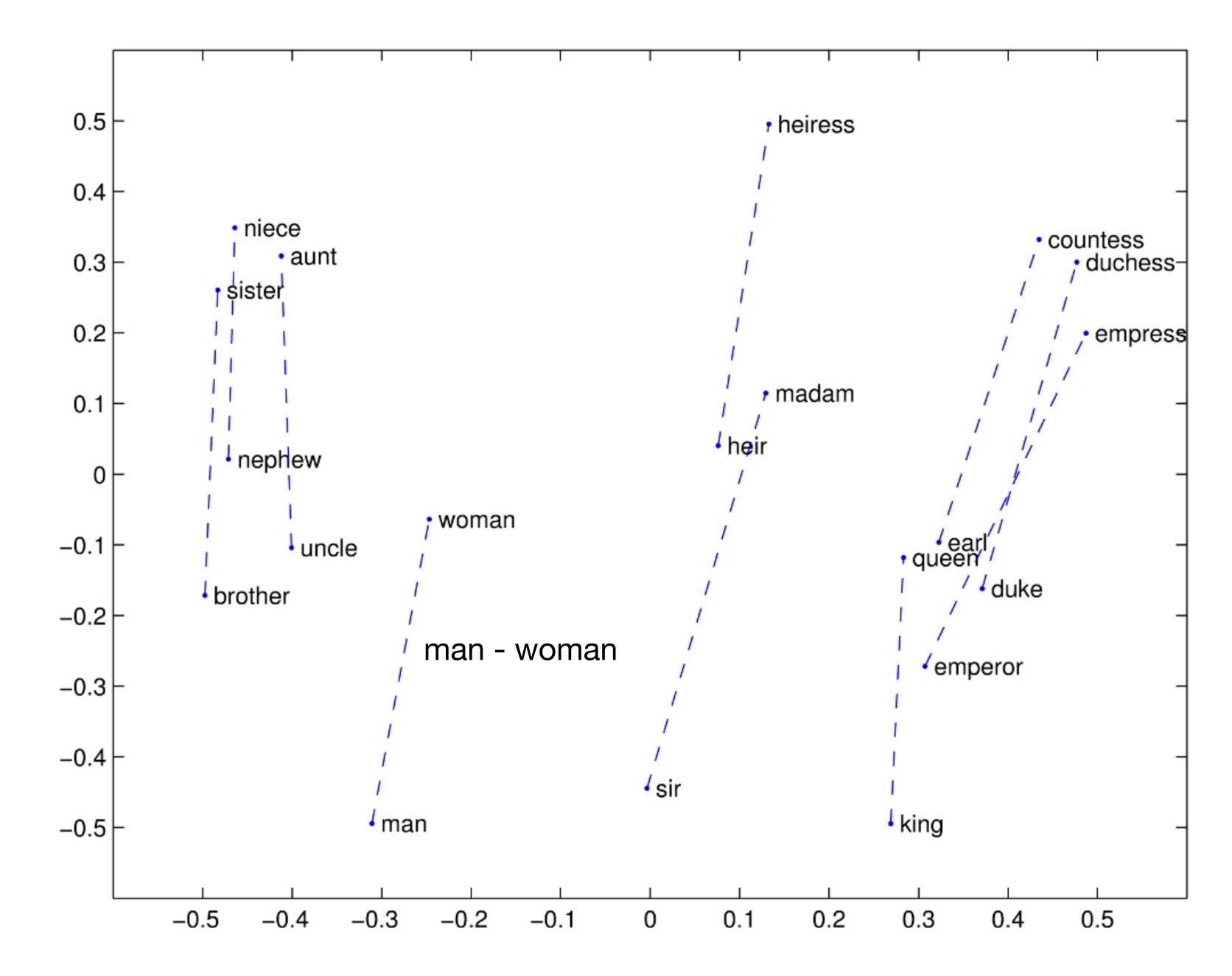
ประเมินประสิทธิภาพของ Word Embedding

Evaluate Word Embeddings

- การประเมินผลเฉพาะตัว (Intrinsic evaluation)
 - Semantic analogy test
 - Syntactic/morphological analogy test
 - Word similarity test
- การประเมินผลจากโจทย์อื่นๆ (Extrinsic evaluation)
 - นำไปใช้เป็น feature ของ text classification

Semantic Analogy Test

- Bangkok:Thailand = Paris:France
- Mexico:peso = Korea:won
- uncle:aunt = king:queen
- boy:girl = grandpa:grandma

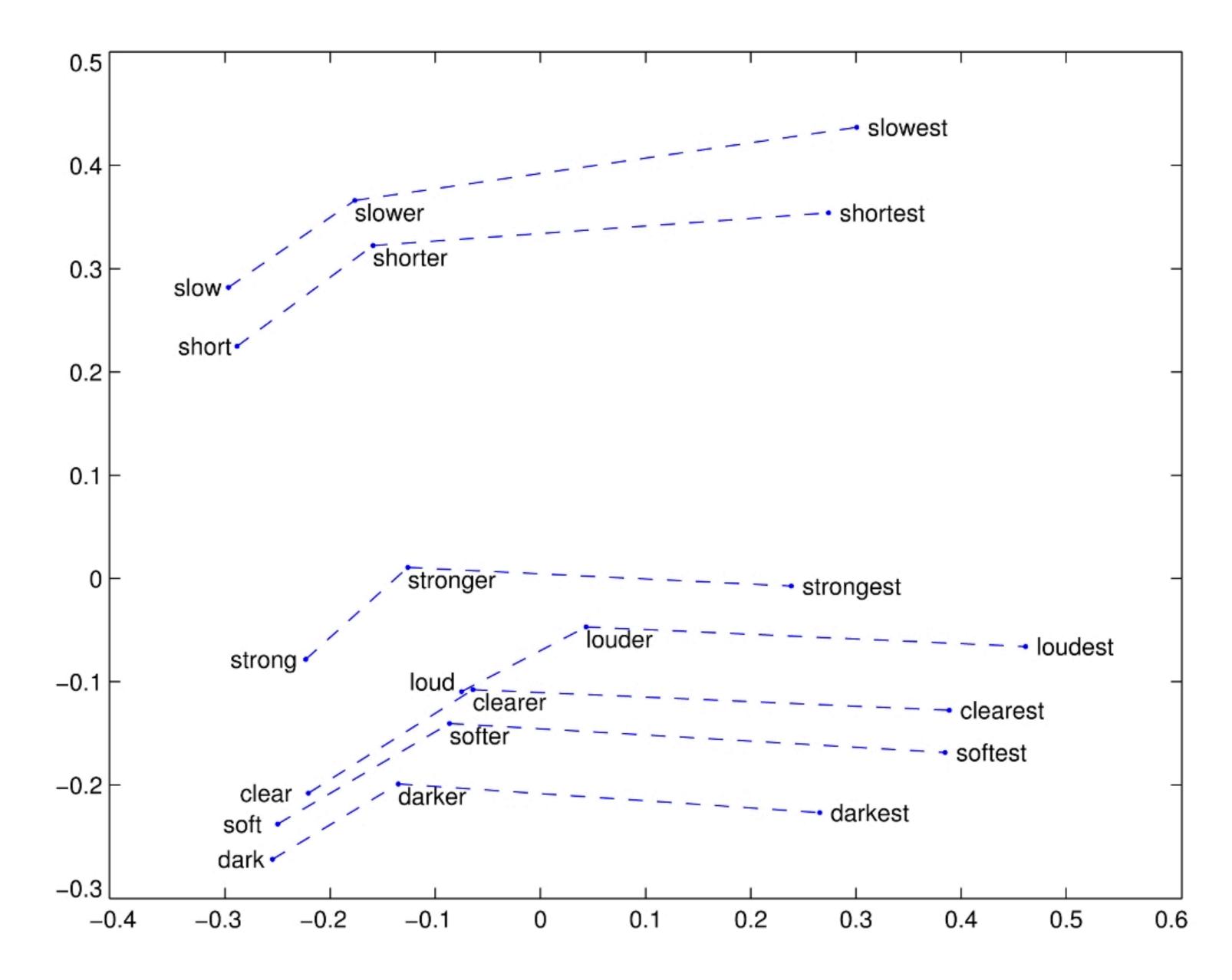


Semantic Analogy Test

- Bangkok:Thailand = Paris:France
 - Bangkok Thailand = Paris France
- Mexico:peso = Korea:won
- uncle:aunt = king:queen
- boy:girl = grandpa:grandma

Morphological Analogy Test

- 9 types of English morphology e.g.
 - amazing:amazingly = possible:possibly
 - clear:unclear = known:unknown
 - bad:worse = big:bigger
 - dancing:danced = sleeping:slept



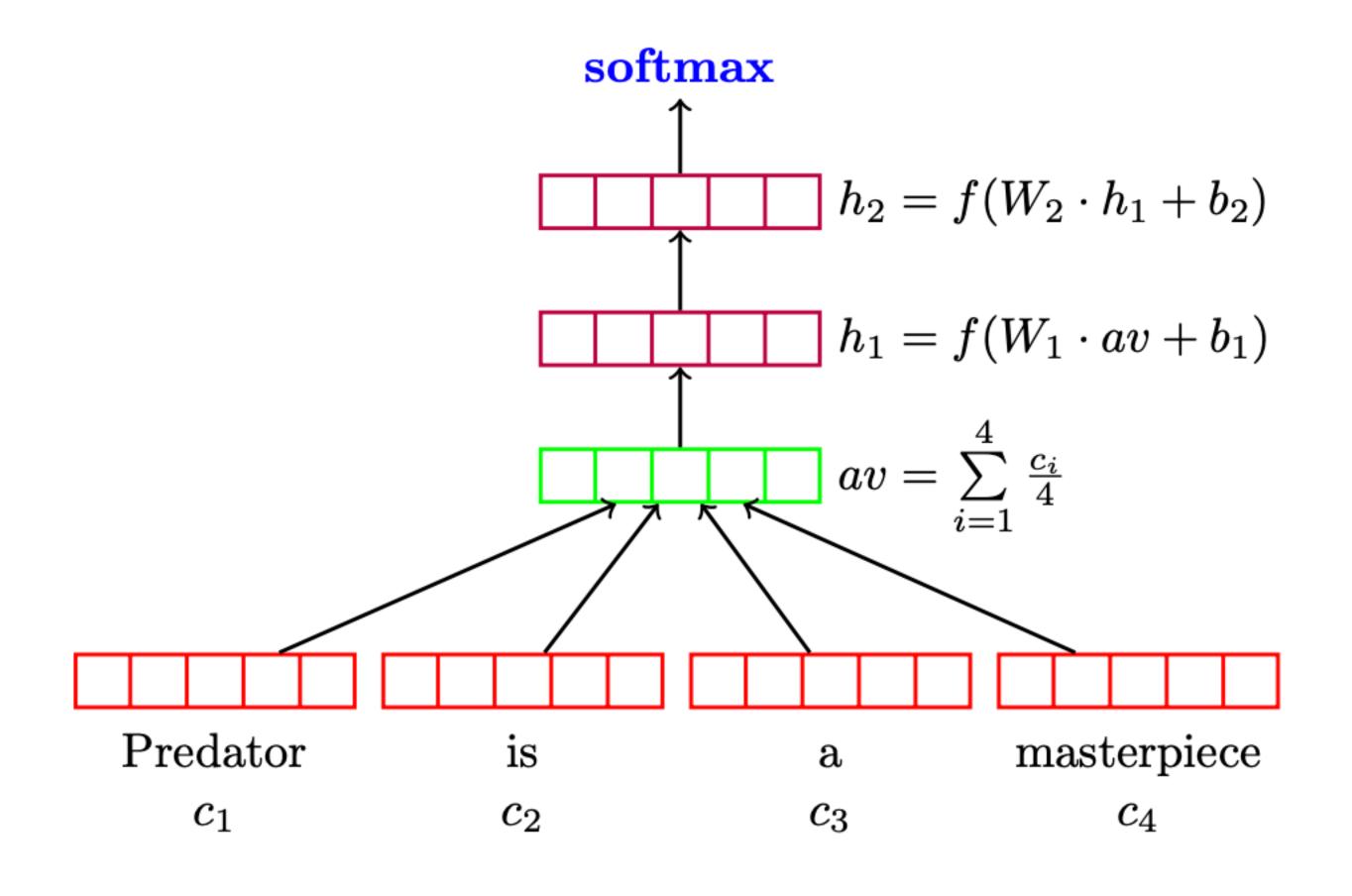
Word Similarity Test

$Word_1$	Word ₂	Similarity score [0,10]
love	sex	6.77
stock	jaguar	0.92
money	cash	9.15
development	issue	3.97
lad	brother	4.46

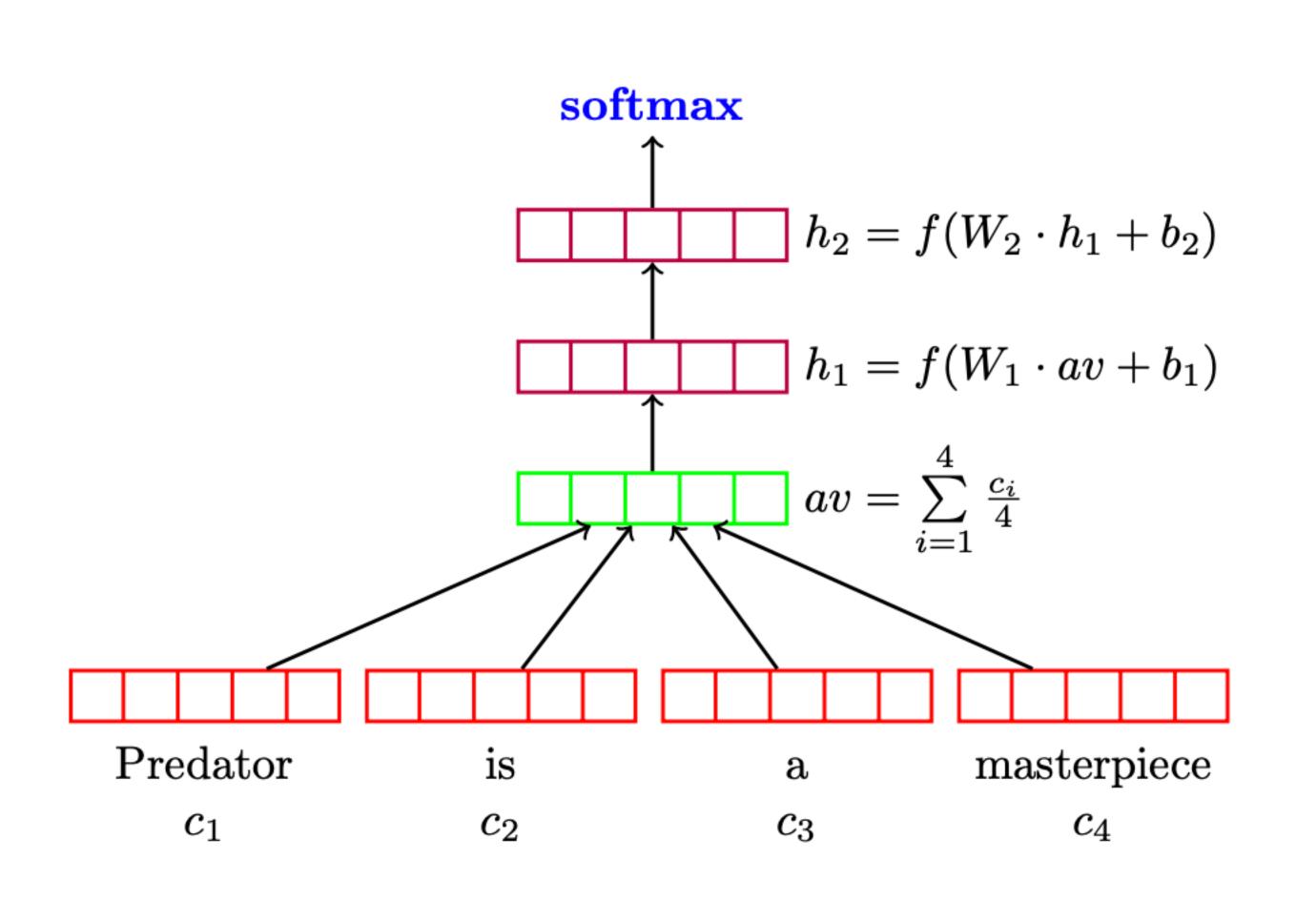
$$rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = rac{\sum\limits_{i=1}^{n} A_i B_i}{\sqrt{\sum\limits_{i=1}^{n} A_i^2} \sqrt{\sum\limits_{i=1}^{n} B_i^2}},$$

Neural Bag-of-Word Model

Neural Bag-of-Word model

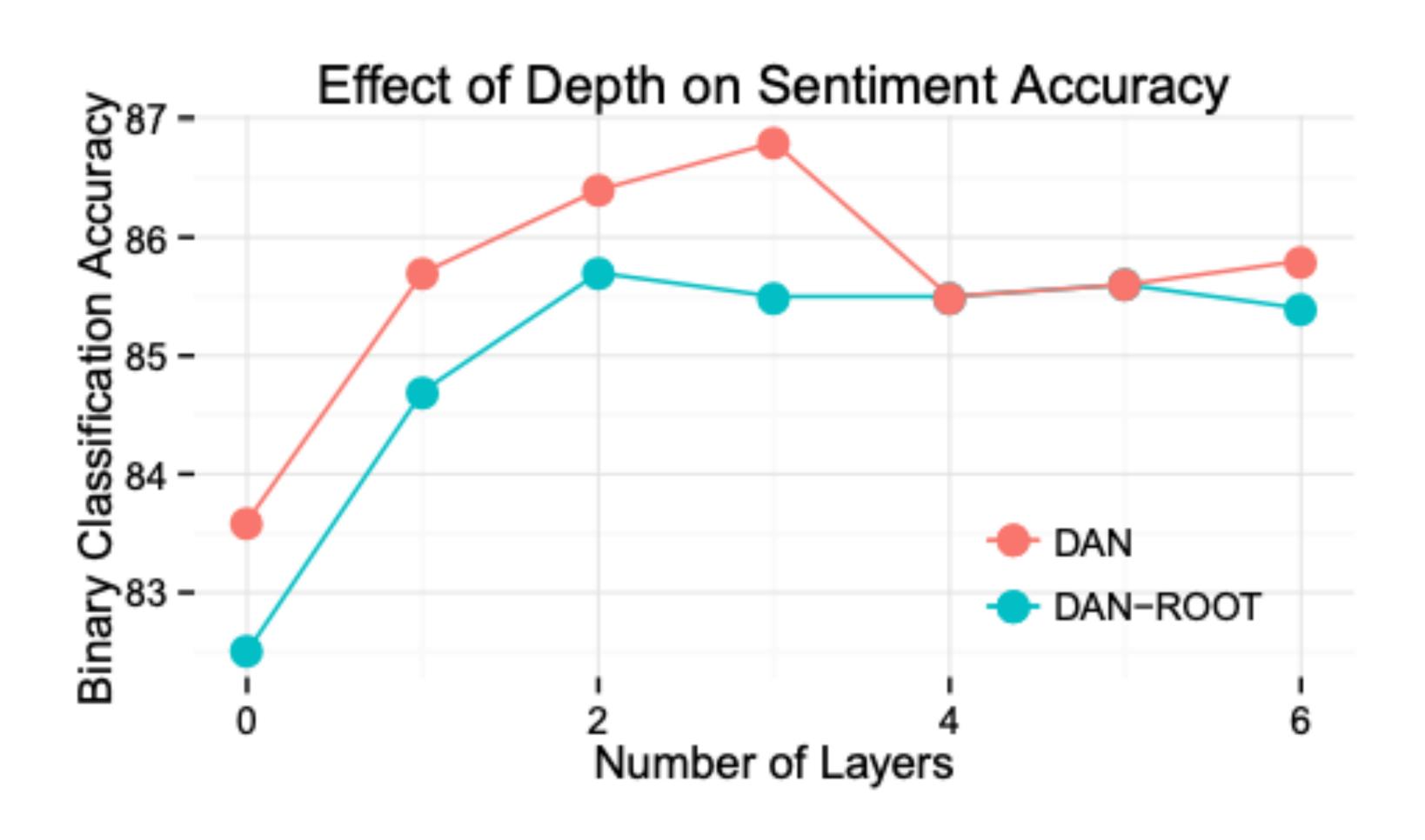


Neural Bag-of-Word model



Model	RT	SST fine	SST bin	IMDB
DAN-ROOT		46.9	85.7	
DAN-RAND	77.3	45.4	83.2	88.8
DAN	80.3	47.7	86.3	89.4
NBOW-RAND	76.2	42.3	81.4	88.9
NBOW	79.0	43.6	83.6	89.0
BiNB		41.9	83.1	
NBSVM-bi	79.4			91.2
RecNN*	77.7	43.2	82.4	
RecNTN*		45.7	85.4	
DRecNN		49.8	86.6	
TreeLSTM		50.6	86.9	
$DCNN^*$		48.5	86.9	89.4
$PVEC^*$		48.7	87.8	92.6
CNN-MC	81.1	47.4	88.1	
\mathbf{WRRBM}^*				89.2

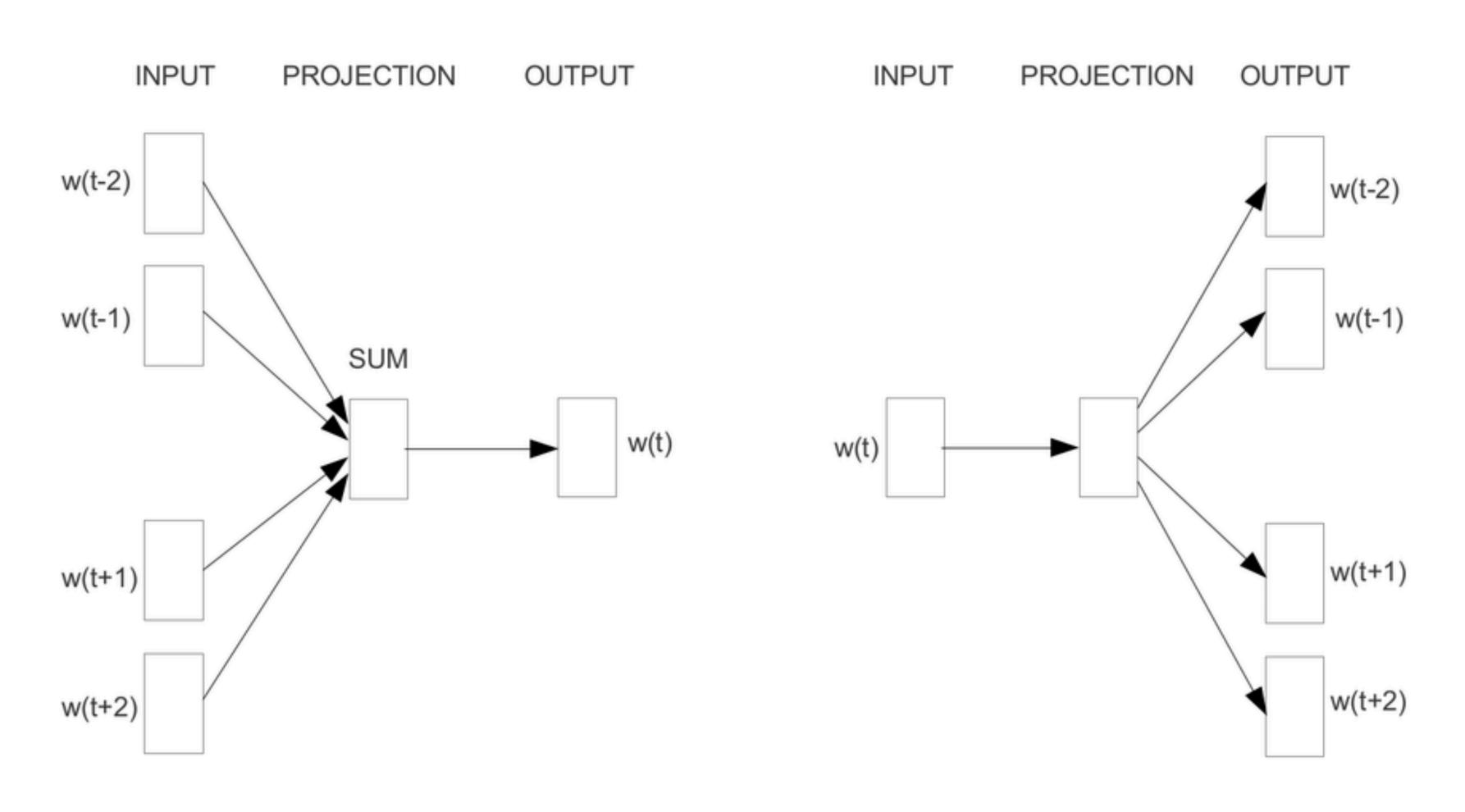
ต้องลึกแค่ใหน



Sentence	DAN	DRecNN	Ground Truth
a lousy movie that's not merely unwatchable, but also unlistenable	negative	negative	negative
if you're not a prepubescent girl, you'll be laughing at britney spears' movie-starring debut whenever it does n't have you impatiently squinting at your watch	negative	negative	negative
blessed with immense physical prowess he may well be, but ahola is simply not an actor	positive	neutral	negative
who knows what exactly godard is on about in this film, but his words and images do n't have to add up to mesmerize you.	positive	positive	positive
it's so good that its relentless, polished wit can withstand not only inept school productions, but even oliver parker's movie adaptation	negative	positive	positive
too bad, but thanks to some lovely comedic moments and several fine performances, it's not a total loss	negative	negative	positive
this movie was not good	negative	negative	negative
this movie was good	positive	positive	positive
this movie was bad	negative	negative	negative
the movie was not bad	negative	negative	positive

Word Embedding จาก โมเดลอื่น ๆ

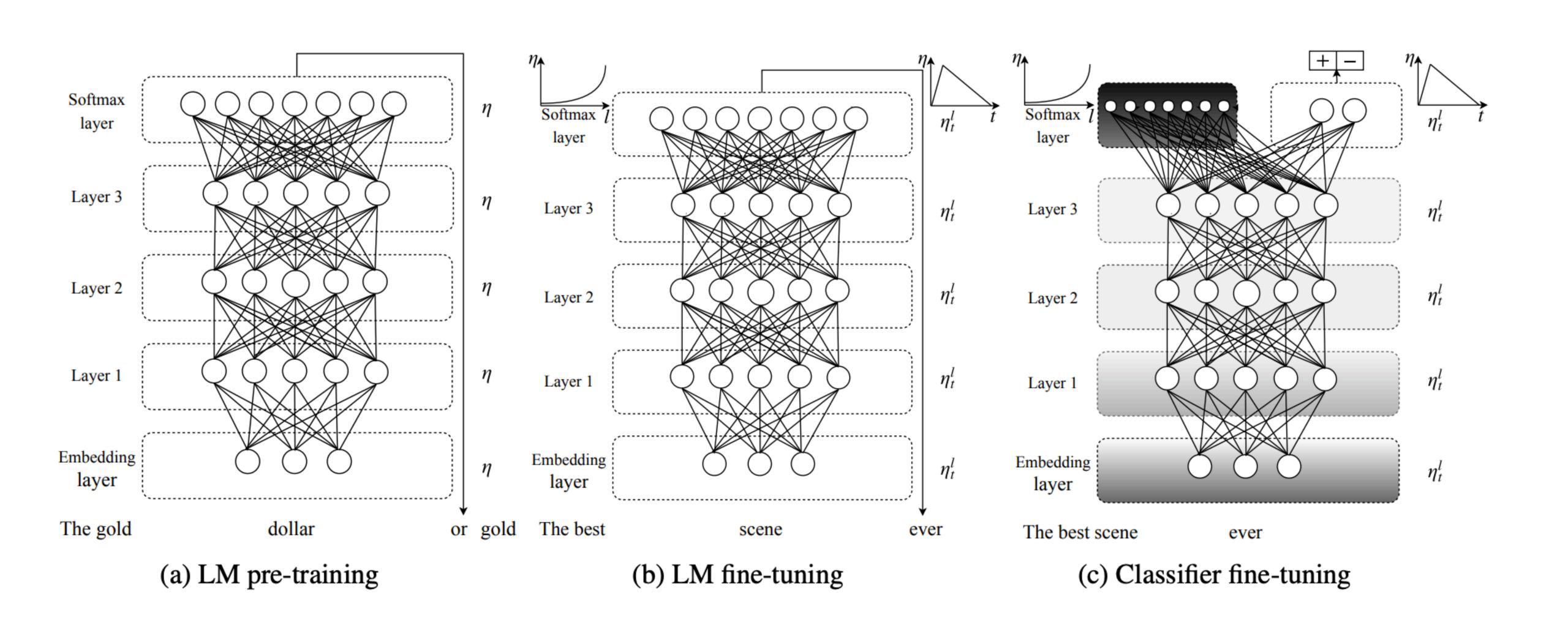
Continuous Bag-of-Word (CBOW)



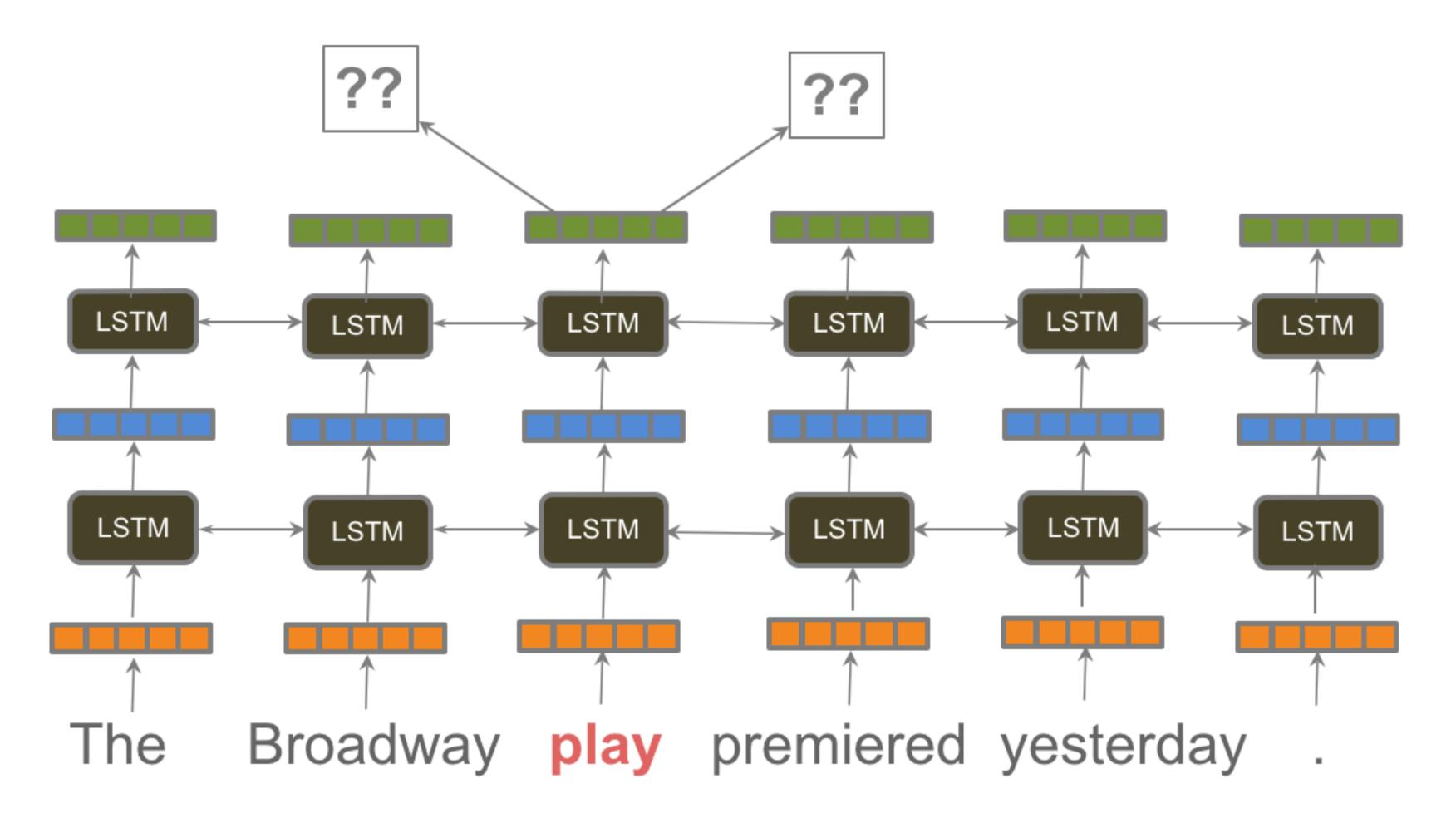
GloVe

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$

ULMfit



EIMO



EIMO

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round
	grounder {}	excellent play.
	Olivia De Havilland	{} they were actors who had been handed fat roles in
	signed to do a Broadway	a successful play, and had talent enough to fill the roles
	play for Garson {}	competently, with nice understatement.